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Abstract— We study the convergence of the nonlinear Kras-
noselskij iteration x(k 4+ 1) = (1 — 0)x(k) + 6T (x(k)) in
real vector spaces of finite dimension equipped with a p-
norm, which is relevant for stability analysis and distributed
computation in several discrete-time dynamical systems. Specif-
ically, we provide sufficient conditions for the convergence of
the Krasnoselskij iteration, derived via implications between
the strict pseudocontractivity of the operator T and the
nonexpansiveness of (1 — 0)ld 4 OT. Interestingly, it turns
out that strict pseudocontractivity of T is necessary for the
Euclidean norm (p = 2) only; not necessary for non-Euclidean
norms (p # 2); sufficient for any finite norm p € (1, co); not
sufficient for the taxi-cab norm (p = 1) and the supremum
norm (p = oo). We numerically verify the above results in the
context of recurrent neural networks and multi-agent systems
with nonlinear Laplacian dynamics.

I. INTRODUCTION

Consider the Banach-Picard iteration [1, Eq. (1.69)] in the
form of discrete-time dynamical system:

z(k+1) = To(z(k)) = (1-0)x(k)+0T(x(k)), k € N, (1)

where 0 € (0,1) and T : R® — R" such that fix(T) # 0.
One of the first convergence results dates back to 1955 and
it is due to Krasnoselskii [2][3, Theorem 6.4.1], who proved
convergence of x(k) to a fixed point when T is nonexpansive
and 0 = % for uniformly convex spaces [4, Definition 1.8].
More than 10 years later, Edelstein in [5] extended this
result to @ € (0,1) and strictly convex spaces® [4, Definition
1.10]. In 1976, the convergence results for the Banach-
Picard iteration in (1) in uniformly/strictly convex spaces
were extended to general Banach spaces by Ishikawa [6,
Theorem 1], see also [3, Theorem 6.4.3]. By limiting their
analysis to Hilbert spaces, Marino and Xu in [7] proved that
the iteration in (1) converges also when the map T is x-
strictly pseudocontractive and § < 1 — k. Moreover, for
linear maps in Hilbert spaces, it has been recently proven
that k-strictly pseudocontractivity of T is both necessary and
sufficient for the convergence of the Krasnoselkij iteration,
given § < 1 — k [8, Theorem 1]. Marino and Xu in [7]
also posed the currently open question: “Does this result
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hold also in Banach spaces which are uniformly convex?”.
Since then, many authors have provided different answers to
this question by considering several iteration schemes and
sets of assumptions [9]-[15]. From a general mathemati-
cal perspective, the convergence problem is a fixed-point
problem [4], or equivalently, a zero finding problem [1].
For example, consensus in nonlinear multi-agent systems
is equivalent to finding a collective state in the kernel of
the nonlinear Laplacian operator [16]-[18]. Variations of the
Krasnoselskij fixed-point iteration have also been adopted to
design distributed algorithms for computing fixed-points in
networks [19]-[23], splitting methods in distributed convex
optimization [24]-[28], aggregative game theory [29], [30],
monotone dynamical systems [31]-[35], and so on.

The main contribution of this paper is showing that, in
real Banach spaces S, = (R",|[|,) of finite-dimension n
equipped with a p-norm for p € (1,00), the Krasnoselskij
iteration converges if 67! < (1 — k)/c, (see Theorems 1-
2) where r = min{p,2} and ¢, > 1 is a constant that
depends on p, whose best (smallest) value is characterized
in Lemma 5. We apply this result to verify alternative set
of assumptions on which some of the state-of-the-art results
are built upon. It turns out that some of these assumptions
can not actually hold, as they imply that the constant c,
takes smaller values than those provided in Lemma 3,
which is not possible. Finally, we discuss two examples of
application, namely recurrent neural networks and consensus
via nonlinear Laplacian dynamics.

II. NOTATION AND PRELIMINARIES

The set of real and integer numbers are denoted by
R and Z, and their restriction to nonnegative and positive
values are denoted with R>¢, N and R+, N, respectively.
Matrices M € R™*™ are denoted by uppercase letters, vec-
tors v € R™ by bold letters, scalars s € R by lowercase
letters, while sets and spaces S are denoted by uppercase
calligraphic letters. We denote by 0, and 1, the vector
of zeros and ones of dimension n, respectively. Mappings
T: X — X, between two spaces X7, X5 are usually denoted
with block capital letters; for instance, the linear operator
associated to the identity matrix [ is defined by Id :  — Tx.
When X; = R, block lowercase letters are used instead,
eg,t: X — R. Given a self-mapping T : X — X,
fix(T) = {& € X | T(x) = x} denotes the set of its fixed
points and zer(T) = {x € X | T(x) = 0} denotes the set
of its zeros.



A. Operator-Theoretic definitions in real Banach spaces

A normed vector space is a pair (X, |-||) where X is a
vector space and ||| is a norm on X, which induces in the
natural way a metric, i.e., a notion of distance: the distance
between two vectors ¢,y € X is given by ||z — y|. We focus
on the real vector space X = R" of finite dimension 7 € N
equipped with a p-norm |-|| ,, for p € [1, oc]. We denote these
spaces with S, = (R", ||-[|,,), which are Banach spaces since
every finite-dimensional normed vector space is complete as
in [4, Def. 1.5 and Rem. 2 on page 7]. The only Hilbert space
is for p = 2, for which the inner product is well defined by
(x,x) = z'x = ||:1:H§ We now introduce some duality
concepts of real Banach spaces.

Definition 1. [4, Def. 1.11] The dual of S, is denoted
by S, = ((R™)*, ||||;) and it is defined as follows:
o The dual space (R™)* is the set of all continuous linear
mappings L, : R" — R uniquely defined by a vector
z € R", such that L,(x) = z " x;
o The dual norm is defined by ||Lz||; = SUP|g <1 |z Ta|.

The concept of a duality mapping was introduced by Beurl-
ing and Livingston in [36]. We define its generalized form
in the case of spaces S, by means of the Holder’s conjugate
numbers.

Definition 2. Two elements p,q € [1,00| are Holder’s
conjugate if% + % = 1 where, by convention, 1/0co = 0.

Definition 3. [9, Page 1, Paragraph 2] The generalized
duality mapping J, : S, — 25 with S, = (R™ [ ]l,,) s
defined® for any x € R"™ by

n r r—1 n
Jo(@)={L:R"=R| 2" z=|lz|}, |=[, " =]z, z€R"},
where r € [1,2] and p,q € [1,00] are Holder’s conjugate.

We now recall some useful results in Lemmas 1-2-3, a
proof of which can be found in the appendix.

Lemma 1. Ler p,q € [1,00] be Holder’s conjugate, then
the dual norm ||-|| is given by L., = | =[,-

Lemma 2. Let S, = (R",|[|,) with p € [1,0c]. Given
r = min{p, 2}, the generalized duality mapping is not empty
Jr (@) # 0 for any € X and consists of (at least) one linear
mapping L, (z) € J-(x) with j.(x) € R" given by

i (@) = {Sig“(w) ola/P7 /|2 if pe[l,00) o

TOToo/1TXo0 if p=oo

where o denotes the Hadamard product and where

:Coo:["'axooi"']—r, Looq = 1 if ‘xi\:manE‘,
' ’ 0 otherwise.
Lemma 3. Consider a Banach space S, = (R",[-]))

with p € [1,00]. Given r = min{p,2}, the generalized
duality mapping is single-valued J,.(x) = {L; (z)} for any
x € X if and only if p € (1,00).

2Special case of [9] for spaces Sp, where [Lzll;, = ll=]l, by Lemma 1.

Among nonlinear mappings, the classes of nonexpansive
mappings and pseudocontractions play a pivotal role. Let us
define these properties in the context of Banach spaces Sp,.

Definition 4. [37] Consider the space S, = (R™,[-])
and a mapping T : R" — R™. If for all ,y € R™ it holds

IT(2) = T()l, < £z -yl 3)

then the mapping is is called:
o (-contractive (¢-C) if £ € (0,1);
o nonexpansive (NE) if { = 1.

Definition 5. [9] Consider the space S, = (R, |-|,) and
a mapping T : R™ — R". If for all x,y € R" there exists
Lr ==L, (@—y) € Jr(x —y) with r = min{p, 2} such that
L (T(x)-T(y)) < [z -y,
1—k . @
e =y = (T(@) = T@))l,,

then the mapping is called:

o k-strictly pseudocontractive (k-SPC) if k € (0,1);
o pseudocontractive (PC) if k = 1.

We note that it holds: /-C = NE = k-SPC = PC.

III. MAIN RESULTS

Our first main result in Theorem 1 characterizes the
relation between the nonexpansiveness of the Krasnoselkij
iteration operator and the strict pseudocontractivity of the
corresponding mapping, which is instrumental to obtain
sufficient conditions for its convergence, our second main
result, Theorem 2. More precisely, given a xk-SPC mapping
T, Theorems 1-2 ensure that the Krasnoselksji iteration Ty
in (1) converges for

g1 < 1-— Iﬁ:’
Cp

Vp € (1,00) (&)

where 7 = min{p, 2} and ¢, is a constant that depends on
the space S, of interest. The existence of such constant c,
follows by the Reich’s inequality [38], which is given in
the following Lemma 4 in the special case of S, spaces,
by exploiting the results of Honh-Kun Xu in [39]. We then
prove in Lemma 5 that the value of the constant ¢, provided
by Lemma 4 is the best possible.

Lemma 4. [38][39, Egs. (3.5)" and (3.8)’ in Corollary 2]
Consider the Banach space S, with p € (1,00). Given two
vectors x,y € R™ and the (unique) dual linear mapping
Lj, (@) € Jr(x), then it holds that

lz +yl, < 2, + b, @) () + ellyll,, (6)
where r = min{p, 2} and

p—1 ifp>2
C, =
P+ +)r ifpe(1,2)]
with t,, being the unique solution of the following equation

(p—2)t" '+ (p—1P 2 =1

)



In [39, Remarkl] is stated that the constant c, as give
in Lemma 4 is the best possible, i.e., there are not smaller
values of ¢, for which inequality in eq. (6) holds for any pair
of points x,y € R™. However, a proof of this claim is not
provided in [39], and also in the references therein. We now
provide such proof, which — to the best of our knowledge —
is a novel technical result.

Lemma 5. The constant c,, in (7) is the best possible and
is such that c, > 1 for all p # 2.

Proof: The proof consists in providing pair of points
x,y € R™ such that the inequality in eq. (6), reported next

lz + yll, < ], + L, @) (@) + collyll,,

holds strictly for ¢, as in eq. (7). Let us first consider the case
of p € [2,00) and the points: = [a, a]T, y = [-1, 1] .
Since 7 = min{p, 2} = 2, one can compute the generalized
duality mapping J,» = Jo of by means of Lemma 2, which
is unique by Lemma 3, namely

Jy(z) = {LJ-Z(E) {R™ 5 R | jo(w) = 2772a [1 1}T}.

One can verify that the above is correct by
. 2 . 2

x'ja(x) = |z[, = lj2(2)l, = V4a, where ¢ = p/(p — 1)

is the Holder’s conjiugate of p according to Definition 2.

Let us now compute the following norms |||, = v2a,

[z + y”p = \V(QJF 1P + (a —1)?, pr = /2, and also

Lis(e) (W) = ¥ jo() = 2772a[-1, 1][1, 1]T =0.

Substituting the above into inequality (6) of Lemma 4 yields
(V/(a+1)P + (a—1)P)? < V/4a® + ¢, /4 and therefore

cp = fpla) == V41 ((\Iy(a +1)P + (a—1)P)% — \741(12) ,

for all p > 2. The maximum of the function f,(a) provides
a lower bound to the minimum value of c,. It can be verified
that f,(a) is monotonically increasing w.r.t. a, and thus the
maximum is attained in the limit of @ to infinity!:

CpZahHI{)lofp(a):P*L VPZQ

!'Verifiable by symbolic analysis tools, e.g., Wolfram - Alpha Pro engine.

— c¢pineq. (6) % c;ineq. (9)
2 T T T T

V4

Fig. 1. Comparison between the value of c;, provided by Lemma 4 with
the lower bound ¢y provided within the proof of Lemma 5.

Let us now consider the case of p € (1,2) and the points:
xz =[1, 1", y = [0, a]". Since » = min{p,2} = p,
one can compute the generalized duality mapping J, = J,
of = by means of Lemma 2, which is unique by Lemma 3,
namely

Jy(x) = {Ljp(m) R" SR |jy(x) = [1 —1]T}.

One can verify that the above is correct by
. : -1

2T jp(@) = [z, = o)} """ = 2, where g = p/(p—1)

is the Holder’s conjiugate of p according to Definition 2.

Let us now compute the following norms: [z, = V2,

|z +yl, = v/1+ (a—1)?, |y, = a., and also
LJQ(m) (y) = yT_jg(w> = [a’7 0}[17 _1] = —a.

Substituting the above into inequality (6) of Lemma 4 yields
14 (a—1)? <2 — pa+ cpa? and therefore

¢y > fyla) = a P ((a—1)" = 1+pa), Vpe(1,2).

The maximum of the function f,(a) provides a lower bound
¢, to the minimum value of ¢;, which occurs at the (unique)
value of a, that makes the derivative zero, i.e.,

c; = fp(ap). (8)

Since there is not a closed form solution of a,, we computed
it numerically for p € (1,2) and compared the lower-bound
¢, in eq. (8) with the value of ¢, given in eq. (7) of Lemma 4.
The results are displayed in Figure 1, which demonstrates
that the lower bound ¢ is equal to ¢, (up to numerical
precision). Since ¢, > 1, Vp # 2, the thesis holds. [ |

Our main result about the relation between the pseudo-
contractivity of a mapping and the nonexpansiveness of the

Krasnoselkij iteration map is given next.

a, le,(ap) =0, =

Theorem 1. Consider a

p € [1,00], a mapping T :
properties:

(a) T is k-SPC for some € (0,1);

(b) To=(1—0)ld+ 0T is NE for some 0 € (0,1];
Given r = min{p, 2}, the following statements hold.:
(s1) (a) < (b) with 0 > 1 — k if and only if p = 2;
(s2) (a) = (b) with 6"~ < (1 —kK)/c, if p € (1,00);
(s3) (a) # (b) for any 6 € (0,1) if p € {1,00}.

where c, is given in eq. (7) of Lemma 4.

Banach  space S, with
X — X and the following

Proof: We recall that a continuous linear mapping
L, € J.(x) is such that the following properties hold:
o L(0x) =0L,(x) for all # € R and x € R™;
e Li(xxty)=L.(x) £L,.(y) for all x,y € R™.
We first prove statement (s1). For each p € (1,00), let
r = min{p, 2} and L, € J,(z — y), then it holds:
1

L (T(z)=T(y))=4L (To(2)—(1-0)z—To(y)+(1-0)y)

®2 [LT (To(x)—To(y))—(1-0)L, <‘”_y)}

@ L (To(w)-To(@) +(1-6) |-y

>



(@) 171
<

<~ |5 (le~y=(To@)-To@)l; -l

—cpnTe(w)—Te(y)n’“)+<1—e>|\w—y|r}
a0 ey D ey (T@) - Tw)
~(1 gt oyl 1||m—y—<T<w>—T<y>>||;
(%)nw—yn;— e (T

Vi)

( r 1—K -
< lz=yl,———lz—y—(T()=-T))l,,

where (7) holds by linearity of L; (i) follows by Definition 3;
(4i7) follows by the tight bound eq. (6) in Lemmas 4-5, which
L. (@ (®) < =% (la+ bl — lall; = ) ]}) for
any a,b € R™; (iv) follows by nonexpansiveness of Ty; (v)
holds if and only if ¢, <7 —1 < 1, which holds if and only
if p=1r =2 by Lemma 5 (otherwise, ¢, > 1 for p # 2);
(vi) holds for ”~! > 1 — k. This proves statement (s1).
We now prove statement (s2) by letting L. (z — y):

implies lal

To@) — To@)Il; = (L — 0)(@ — ) + 6(T(x) — T@)I
oy~ b —y — (T(@) T
Qe — yl, — rbL(z —y — (T(@) — T(w)))

+epllf(x —y — (T(x) — T(w)I,
=(1=r0)|@ — y|), + roL(T(z) — T(y))
+0cplle —y — (T(x) — T(y))||;
(QW—yM—ﬂl—@M—y—(W@_T@»M
+0 | —y— (T(x) — T)I,
Lo -yl

where (7) holds by Lemma 4; (ii) holds since map T is
k-SPC; (4i%) holds for —(1 — k) + 6"¢c, < 0 which implies
07—! < (1 — k)/c,. This proves statement (s2). On the other
hand: in the limit of p — 17, it holds that r = p and ¢, — 2~
(see Figure 1), and therefore 1 < (1 — k)/2, which is in
contrast with £ > 0; in the limit of p — oo, it holds that
r =2 and ¢, — oo (see eq. (7)), and therefore 6 < 0, which

is a contradiction. This proves statement (s3). [
Corollary 1. For the Euclidean norm, i.e. for p = 2,
statements (s1) and (s2) of Theorem 1 implythat (a) < (b)

with 0 =1 — k.

A result related to the above corollary has been recently
proven for linear maps in the Hilbert space (R",||, p)
where |-, p = V2T Pz and where P is a symmetric and
positive definite matrix [8, Lemma 5]. We are now in the
position to prove our second main result for the convergence
of the Krasnoselsij iteration. In particular, the tight bound on
the constant ¢,, ensured by Lemma 5 allows to determine the
largest value of # anticipated in eq. (5) ensuring convergence
of the iteration.

Theorem 2. Consider a Banach space S, and a map
T:R" — R"™ such that fix(T) # 0. Given v = min{p, 2},
the following statements hold:

o [6] The iteration in (1) converges if T is NE for any

p € [l,00] and 6 < 1;
e The iteration in (1) converges if T is k-SPC for any
p € (1,00) and 071 < (1 — K)/cp, with ¢, as in (7).

Proof: The first statement is due to [6, Theorem 1]. By
our Theorem 1, for p € (1,00) it holds that for 6* = ((1 —
#)/cp) "=V € (0,1) the map Tp- = (1 —6%)ld + 0*T is
NE. Consequently, map Ty ruling the iteration in (1) can be
equivalently written as To = (1 — £)Ild + £ To-. Thus, Ty
can be seen as the Krasnoselskij iteration of the nonexpansive
map Ty~ with coefficient 6/6*, which is known to converge
for /0* < 1 by [6, Theorem 1], i.e.,

9 97‘71
0 = T A= R ) /D ST U= m) e

completing the proof. [ ]

<1,

Remark 1. Theorem 2 provides an upper bound to the
value of 0, namely 0 < (1 — K)/cp, which limits the con-
vergence speed of the Krasnoselkij iteration. Higher values
of the strict pseudocontracivity constant r imply smaller
admissible values of 0, i.e., slower convergence. The same
holds for the constant c,, whose best (smallest) value is
characterized in Lemmas 4-5. In particular, the minimum
value ¢, = 1 (yielding faster convergence) holds only for
p = 2, while for any other p # 2 then ¢, > 1 (yielding
slower convergence).

The following corollary directly follows from Theorem 2
and [1, Theorem 5.14(iii)], which ensures the convergence
of the Krasnoselksij-Mann iteration given by

a(k+1) = (1 - 0)ax(k) + 0, T(2(k)), ©)

when T is SPC and where the sequence (0)xcn is such that
0 <0 < Oyax < oo for all k£ € N, for some 0y ,x, and such
that limy_,o0 0 = 0 with "7 0, = o0

Corollary 2. Consider a Banach space S, and a map
T:R" = R"™ such that fix(T) # 0. Given r = min{p, 2},
the following statements hold:

o Iteration (9) converges if T is NE and p € [1, 00];

e Iteration (9) converges if T is k-SPC and p € (1, 00).
IV. COMPARISON WITH THE STATE-OF-THE-ART AND
APPLICATIONS TO DYNAMICAL SYSTEMS

In this section, we discuss the applicability of the results
in [13], [14], [40] limited to finite spaces S, = (R", ||||p)
with p € [2,00). Let us recall the general form of the Reich
inequality in (6) in Lemma 4, as originally formulated in [38]
and then recalled in [13, Lemma 2.3] and [14, Lemma 1.5]:

][, +2L5, (o) () +max{ 2] ,, L}yl 5(lyll,),

where 5 : Ry — R+ is a continuous function such that

Jim B() =0, Blet) < eB(),

2
lz+yl, <

Ve > 1.



Chidume and Su in [13, Lemma 3.2] and also Sahu and
Petrusel [40] have based their result on the assumption
“B(t) < ¢”, while Cholamjiak and Suntai in [14] made the
following assumption “3(t) < 2¢”. Under these assumptions,
for vectors ||, <1 the Reich inequality becomes

Byt = |e+yl, <l2ll, +2L;, @) @)+ lyl,, (10)

Bty<2t = [etyl, <zl +2L; @) () + 2]yl
(1)
Comparing the above with the bound in eq. (6) in Lemma 4,
which is the best possible by Lemma 5, one can verify that:
o Assumption in (10) of [13], [40] holds only for p = 2;
» Assumption in (11) of [14] holds only for p € [2, 3];
We provide an example corroborating these statements, let

1 T -p T
x=gs[1 1] , y=Lz[-1 1 , 12
and compute ||z, =1, yl; =p~" Ly (y) =0,

le+yl? = (/P + 1P + (p 7 — DP)2/ V4. For this
pair of points, assumptions in eqgs. (10)-(11) do not hold for
p > 2 and p > 3, respectively, as it is shown in Figure 2.
The plot on the right of Figure 2 displays the sign between
the distance of ||x + y||i to the bounds, which takes value of
—1 when the bound holds and 41 when it does not. On the
other hand, our results are consistent with those of Zhang
in [9] where, however, the explicit values of the constant ¢,
determining the upper bound on 6 are not given.

A. Application example: Recurrent Neural Networks

Consider the following continuous-time recurrent neural-
network, usually referred to as the firing-rate model:
x(t) = —F(x(t)) := —x(t) + P(A=x(t) + b)
—_———
T(=(t))
where ,b € R", A € R"" and ¢:R" - R"
is an activation mapping applied entrywise, i.e.,
®(x) = (p(x1),...,0(xy)) with ¢ : R — R. In this
example, we consider the case that ¢ is a LeakyReLU
activation function, i.e., ¢(xr) = max{z,ax}, where we
select @ = 0.1. Stationary point of F are also fixed
points of T, ie., zer(F) = fix(T). In order to find a
stationary point, one can apply the forward step method

x(k+ 1) = (Id — 6F)x(k), which leads to the Krasnoselkij
iteration in (1):

z(k+1) = Tox(k) = (1 — O)a(k) + 0T (z(k)).

13)

- sign(le -yl — (I3 + ly]?)
....... sign(|lz -yl — (|21 + 2]y|?)
2 T !
A

of ! |
1 fet B

L — 2 Il Il Il
4 5 2 3 4 5

2 2 2
= =l + llyll, = =yl
2 2
"""" ], + 2llyll,

Fig. 2. Empirical validation for the pair of points in eq. (12) of the
assumption of Chidume and Su in eq. (10) [13] (red dashed curves) and of
Cholamjiak and Suntai in eq. (11) [14] (blue dotted curves).

Now, let us consider the following matrix:

-0.12 -0.63 -0.33 +0.21
A— +0.12 +0.15 +0.03 +0.09

—-0.63 —0.30 +0.36 +1.65|"

—-0.90 =579 +40.45 —6.39

Note that for § = 1 the iteration surely does not con-
verge because the matrix A has an eigenvalue outside the
unitary disk, that is A = —6.3912. For p = 2, one
can verify that the operator T is not k-strictly pseudo-
contractive w.rt. ||-| for any x € (0,1), as exemplified
by following choice of vectors x = [3.34, —4.82,4.87,1.05],
y = [3.42,—1.86,0.18, —1.25]. Instead, for p = 4 we have
empirically verified that the operator T is k-strictly pseu-
docontractive w.r.t. ||-||, with x ~ 0.972. Thus, the forward
step method converges for § < (1 — k)/(p — 1) = 0.0093
according to Theorem 2.

B. Application example: Nonlinear Laplacian dynamics

Consider a network of n agents with discrete-time dynam-
ics seeking consensus via the following nonlinear protocol

x(k+1)=(1—-0)x(k) + 0k (—x(k) + f(Lx(k))),

T(=(k))

where L € R™*"™ is the Laplacian matrix associated to
the graph describing the interactions among the agents,
and f:R"™ — R"™ is a nonlinear operator such that f =
[...,fi,...] with f; : R — R. In this example, we consider
the case all f; for ¢ = 1,...,n are the same saturating
function: f;(z) = (1 — e ™*)/(1 + e~™*) with m > 0.
Note that for m = 2 the above reduces to the hyperbolic
tangent function and for m — oo it approximates the
sign function; from now on we consider m = 10. For
p = 2, one can verify that the operator T is not k-strictly
pseudocontractive w.r.t. ||-||, for any x € (0, 1) as exemplified
by the following choice of vectors: « = [0.2, —1.0, 1.0, 0.3],
yb=[-0.1,—-1.3,—0.6, —0.6]. Instead, for p > 5 we have
empirically verified that the operator T is k-strictly pseudo-
contractive w.r.t. |||, for some € (0,1). Thus, the agents
could employ a vanishing time-varying sequence 6; as in
eq. (9) and converge to a consensus according to Corollary 2.
In this case, it is not necessary that the agents know the
constant « of strict pseudocontractivity of the operator T,
i.e., they do not need global information about the system to
guarantee convergence.

V. DISCUSSION AND FUTURE DIRECTIONS

The class of k-strictly pseudocontractive operators has
attracted attention because it leads to generalized conver-
gence results of fixed-point iterations. This work provides
the tightest condition for the convergence of the Krasnosel-
skij iteration on strict pseudocontractive operators for finite
and real Banach spaces S, = (R",[[,) with p € [1, cc].
Notably, for p = 2, x-strict pseudocontractivity of a mapping
T is necessary and sufficient for nonexpansiveness of the
averaged mapping Ty = (1 — 0)Id + 6T with 6 = 1 — «.
In contrast, for p # 2 this is not the case, but there exists a



sufficiently small 6 such that Ty becomes nonexpansive given
that T is strict pseudocontractive. Finally, for p € {1,000},
there exists no such a 6. The weakening of the link between
strict pseudocontractivity of T and nonexpansiveness of Ty
when transitioning from the Hilbert space S2 to Banach
spaces S, with p # 2 — and its complete loss for p €
{1,00} — motivates two research directions: 1) consider
weighted norms |-[|, » for symmetric, positive semidefinite
matrices P, and 2) search for alternative properties to strict
pseudocontractivity.
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APPENDIX e Condition b) for p € [1,00):

— T
A. Proof of Lemma 1 Il = sign() o |z 1 _
By means of the Holder’s inequality it holds, Yllq H;c”i—”
q
T - - 1 T n (p—1)q) '/
[yl = | was| < 3 leal < I,y _ [pr- Hq] (L)
. ' ' ;" "
which leads to an upper bound to the norm,
p=17T —17T
n €XTi P pP X b
Iyl = sup [Ly(@] < sup lzl,ll, < I, _ | Sl T
e, <1 ], <1 | 7 :

To prove the converse inequality, we should estimate the e Condition a) for p = oo such that r = 2: let no, be the
supremum from below. We start by considering p € (1,00)  number of entries of @ such that |z;| = max ||, then it holds

. . ar
and the vector & = [Z1,...,%,]T defined component-wise 2T (2 0 o) (2 0x) Zo (%) @0

by & = a-2, 1—q . . . Tor o o o
y @i = |yi|" “wilyll, - By simple manipulation one can xTy = — 7 =Tt =1 =
verify that ||z, = 1, ie., & belongs to the constraint set >, oo o
||, <1 of the supremum function, and thus we can write _ NooMax® _ Hm”i},
Neo
LI > ’ Ti’ _ ii 1 Do lyil® IIyHZ — |yl e Condition b) for p = oo such that r = 2: let no, be the
vllp = 1Y 21 = |, < Wil = lyle et Yla* number of entries of @ such that |z;| = max |z|, then
i= q q
2
Whereas, for p = oo we consider the vector of ones £ = 1 ||yH2 _ || T || _ L”w ox H2 _
= = <lIF =
which is such that ||| = 1. Thus, we get ! 1Tz ||,  nd !
n n n 1 n 2 ngo 9 2
Ll > [y = > ] = Sl = || = Il =z | bl | = 3 maxa® = el
i=1 i=1 i=1 =

Finally, for p = 1 we let I be the set of indexes such that This completes the proof.

|z;| = max |x|, i.e., I = {i € [1,n] : |y;| = max|y|}, we C. Proof of Lemma 3
let || be the cardinality of the set and consider the vector

- 4 We first note that for p € (1,00) the generalized duality
a defined component-wise by

mapping J, mapping is in one-to-tone relation with the

1|1 if i€l so-called normalized duality mapping Jo since J.(x) =
T = {O herwise ||w\|§_2J2(a:) (cfr. [39]). Thus, the sufficiency of the state-
otherwise ment is due to the strict convexity of the Banach space

Sp (cfr. with Definition 1.10 and Remark 1 on Page 9

which clearly satisfies ||Z|, = 1. Thus, we get '
of [4]). The necessity follows from the next two counter

. _ L n |yi| examples: (Case p = 1 and r = 1) Let ¢ = [1,0]T €
Ll =y @] = D s = 1> 77 =D 7 = Wl B2, then all points y = [14]7 € B2 with [6] < 1 belongs
=1 el el to Ji(z), ie., yTz=|z|, =yl =1. (Case p = o0

Since [yll, < |||_y||; < |yl for all p, the proof is and r = 2) Let z = [2,0,2]T € R?, then all points
completed. y=10,0,2 — 0] € R? with 6 € [0, 2] belongs to Jo(x), i.e.,

2 2
yle = [lz) = llyly = 4.
B. Proof of Lemma 2
Given r = min{p, 2}, we are going to prove that y =
jr(x) as in (2) belongs to J,(x) for any € X. To do so,
we need to verify the following two conditions:
a) [z, = xTy;
r—1
We go through the proof case by case:
e Condition a) for p € [1,00)]:

ry — ZT(sign() ofal") _ |z[Te
€T y = p—r = =7 =
(e (e
P
D o R

Il el



